Sains Malaysiana 54(3)(2025): 757-767

http://doi.org/10.17576/jsm-2025-5403-12

 

A TaqMan Duplex Quantitative PCR Method for Detecting Klebsiella pneumoniae has been Developed Based on Pan-Genome Analysis

(Kaedah PCR Kuantitatif Dupleks TaqMan untuk Mengesan Klebsiella pneumoniae telah Dibangunkan Berdasarkan Analisis Pan-Genom)

 

ZENGHUI LI, MINGMING HUA, XINYU LIU, YI WANG, MENGMENG KONG, ZHENG HU & BO YANG*

 

A National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430070, China

 

Received: 2 September 2024/Accepted: 26 November 2024

 

Abstract

Klebsiella pneumoniae is a significant pathogen capable of causing infections in the respiratory, urinary, and bloodstream. In this study, bioinformatics-based pan-genome analysis identified specific and conserved LptD and MerR protein gene sequences in K. pneumoniae. Based on these sequences, specific primers and probes were designed, and the reaction system and conditions were optimized to establish a TaqMan probe-based duplex real-time quantitative PCR method for detecting K. pneumoniae. The method was tested on genomic DNA from 14 common pathogens and negative controls. The results showed that only the genomic DNA of K. pneumoniae was positive, while all other samples were negative. The detection limits for LptD and MerR gene-positive standard plasmid DNA were 5.28 × 101 copies/μL and 5.78 × 101 copies/μL, respectively, and the coefficient of variation for Ct values between intra- and inter-gene groups was less than 3%. These results indicate that the established TaqMan probe-based duplex real-time quantitative PCR method can specifically and rapidly detect K. pneumoniae, which is of significant importance for clinical diagnosis and treatment.

Keywords: Duplex quantitative PCR; Klebsiella pneumoniae; LptD gene; MerR gene; pan-genome analysis

 

Abstrak

Klebsiella pneumoniae adalah patogen yang signifikan dan mampu menyebabkan jangkitan pada sistem pernafasan, sistem kencing dan aliran darah. Dalam kajian ini, analisis pan-genom berasaskan bioinformatik telah mengenal pasti urutan gen protein MerR dan LptD yang khusus dan terpelihara dalam K. pneumoniae. Berdasarkan urutan ini, primer dan prob khusus telah direka bentuk dan sistem serta syarat reaksi telah dioptimumkan untuk membangunkan kaedah PCR kuantitatif masa nyata dwi-fluoresen TaqMan untuk mengesan K. pneumoniae. Kaedah ini telah diuji pada DNA genom daripada 14 patogen biasa dan kawalan negatif. Keputusan menunjukkan bahawa hanya DNA genom K. pneumoniae yang didapati positif, manakala semua sampel lain adalah negatif. Had pengesanan untuk DNA plasmid piawai positif gen LptD dan MerR masing-masing adalah 5.28 × 101 salinan/μL dan 5.78 × 101 salinan/μL dan pekali variasi untuk nilai Ct antara kumpulan intra- dan inter-gen adalah kurang daripada 3%. Keputusan ini menunjukkan bahawa kaedah PCR kuantitatif masa nyata dwi-fluoresen TaqMan yang dibangunkan boleh mengesan K. pneumoniae secara khusus dan pantas, yang mempunyai kepentingan besar untuk diagnosis dan rawatan klinikal.

Kata kunci: Analisis pan-genom; gen MerR; gen LptD; Klebsiella pneumoniae; PCR kuantitatif dwi

 

References

Abdeta, A., Bitew, A., Fentaw, S., Tsige, E., Assefa, D., Lejisa, T., Kefyalew, Y., Tigabu, E. & Evans, M. 2021. Phenotypic characterization of carbapenem non-susceptible Gram-negative bacilli isolated from clinical specimens. PLoS ONE 16(12): e0256556.

Bengoechea, J.A. & Pessoa, J.S. 2019. Klebsiella pneumoniae infection biology: Living to counteract host defences. Fems Microbiology Reviews 43(2): 123-144.

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. & Sayers, E.W. 2013. GenBank. Nucleic Acids Res. 41(Database issue): D36-42.

Chaudhari, N.M., Gupta, V.K. & Dutta, C. 2016. BPGA- An ultra-fast pan-genome analysis pipeline. Scientific Reports 6(1): 24373.

Costa, S.S., Guimarães, L.C., Silva, A., Soares, S.C. & Baraúna, R.A. 2020. First steps in the analysis of prokaryotic pan-genomes. Bioinform. Biol. Insights 14: 1177932220938064.

De Oliveira, D.M.P., Forde, B.M., Kidd, T.J., Harris, P.N.A., Schembri, M.A., Beatson, S.A., Paterson, D.L. & Walker, M.J. 2020. Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews 33(3): e00181-19.

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. 2012. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23): 3150-2.

Gadsby, N.J., McHugh, M.P., Russell, C.D., Mark, H., Conway Morris, A., Laurenson, I.F., Hill, A.T. & Templeton, K.E. 2015. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clin. Microbiol. Infect. 21(8): 788.e1-788.e13.

Huang, Y., Li, J., Wang, Q., Tang, K. & Li, C. 2022. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J. Microbiol. Methods 192: 106385.

Keshta, A.S., Elamin, N., Hasan, M.R., Pérez-López, A., Roscoe, D., Tang, P. & Suleiman, M. 2021. Evaluation of rapid immunochromatographic tests for the direct detection of extended spectrum beta-lactamases and carbapenemases in enterobacterales isolated from positive blood cultures. Microbiol. Spectr. 9(3): e0078521.

Kim, H., Jang, J.H., Jung, I.Y. & Cho, J.H. 2022. A novel peptide as a specific and selective probe for Klebsiella pneumoniae detection. Biosensors 12(3): 153.

Kurupati, P., Chow, C., Kumarasinghe, G. & Poh, C.L. 2004. Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR. J. Clin. Microbiol. 42(3): 1337-1340.

Lee, A.H.Y., Porto, W.F., de Faria Jr., C., Dias, S.C., Alencar, S.A., Pickard, D.J., Hancock, R.E.W. & Franco, O.L. 2021. Genomic insights into the diversity, virulence and resistance of Klebsiella pneumoniae extensively drug resistant clinical isolates. Microbial Genomics 7(8): 000613.

Liu, Y., Liu, C., Zheng, W., Zhang, X., Yu, J., Gao, Q., Hou, Y. & Huang, X. 2008. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. International Journal of Food Microbiology 125(3): 230-235.

Logan, L.K. & Weinstein, R.A. 2017. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. Journal of Infectious Diseases 215: S28-S36.

Ma, H., Xu, J., Zhang, Y., Zhang, R. & Wu, J. 2024. Relevance and antimicrobial resistance profile of Klebsiella pneumoniae in neonatal sepsis. J. Matern. Fetal Neonatal Med. 37(1): 2327828.

Marí-Almirall, M., Ferrando, N., Fernández, M.J., Cosgaya, C., Viñes, J., Rubio, E., Cuscó, A., Muñoz, L., Pellice, M., Vergara, A., Campo, I., Rodríguez-Serna, L., Santana, G., Del Río, A., Francino, O., Ciruela, P., Ballester, F., Marco, F., Martínez, J.A., Soriano, Á., Pitart, C., Vila, J. & Roca, I. 2021. Clonal spread and intra- and inter-species plasmid dissemination associated with Klebsiella pneumoniae carbapenemase-producing enterobacterales during a hospital outbreak in Barcelona, Spain. Front Microbiol. 12: 781127.

Navarro, E., Serrano-Heras, G., Castaño, M.J. & Solera, J. 2015. Real-time PCR detection chemistry. Clin. Chim. Acta 439: 231-250.

Navon-Venezia, S., Kondratyeva, K. & Carattoli, A. 2017. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. Fems Microbiology Reviews 41(3): 252-275.

Paczosa, M.K. & Mecsas, J. 2016. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiology and Molecular Biology Reviews 80(3): 629-661.

Pitout, J.D.D., Nordmann, P. & Poirel, L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrobial Agents and Chemotherapy 59(10): 5873-5884.

Romano, K.P. & Hung, D.T. 2023. Targeting LPS biosynthesis and transport in Gram-negative bacteria in the era of multi-drug resistance. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1870(3): 119407.

Romero-Alvarez, D., Garzon-Chavez, D., Espinosa, F., Ligña, E., Teran, E., Mora, F., Espin, E., Albán, C., Galarza, J.M. & Reyes, J. 2021. Cycle threshold values in the context of multiple RT-PCR testing for SARS-CoV-2. Risk Management and Healthcare Policy 14: 1311-1317.

Russo, T.A. & Marr, C.M. 2019. Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews 32(3): 10-1128.

Togawa, A., Toh, H., Onozawa, K., Yoshimura, M., Tokushige, C., Shimono, N., Takata, T. & Tamura, K. 2015. Influence of the bacterial phenotypes on the clinical manifestations in Klebsiella pneumoniae bacteremia patients: A retrospective cohort study. Journal of Infection and Chemotherapy 21(7): 531-537.

Tulin, G., Figueroa, N.R., Checa, S.K. & Soncini, F.C. 2024. The multifarious MerR family of transcriptional regulators. IEEE/ACM Trans. Comput. Biol. Bioinform. 20(5): 2874-2888.

Wei, Z.G., Chen, X., Zhang, X.D., Zhang, H., Fan, X.G., Gao, H.Y., Liu, F. & Qian, Y. 2023. Comparison of methods for biological sequence clustering. IEEE/ACM Trans. Comput. Biol. Bioinform. 20(5): 2874-2888.

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. & Madden, T.L. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.

Zha, Z., Li, C., Li, W., Ye, Z. & Pan, J. 2016. LptD is a promising vaccine antigen and potential immunotherapeutic target for protection against Vibrio species infection. Scientific Reports 6(1): 38577.

Zhang, L., Xiao, Y., Zhang, G., Li, H., Zhao, J., Chen, M., Chen, F., Liu, L., Li, Y., Peng, L., Zhao, F., Yang, D., Wen, Z., Wu, L., Wu, S., Sun, Y., Wang, Y., Chen, L., Wang, X., Wang, L., Li, W., Qiu, H., Chen, Y., Gao, Z., Ren, L. & Wang, J. 2023. Identification of priority pathogens for aetiological diagnosis in adults with community-acquired pneumonia in China: A multicentre prospective study. BMC Infect. Dis. 23(1): 231. BMC Infectious Diseases 23(1): 231.

Zhu, J., Wang, T., Chen, L. & Du, H. 2021. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 12: 642484.

 

*Corresponding author; email: yangbo@hbut.edu.cn

 

 

 

 

 

 

   

 

previous next